HashMap源码分析
HashMap是我们开发中经常使用到的集合,jdk 8 相对于 7 底层实现发生了一些改变。
8 主要优化减少了Hash冲突 ,提高哈希表的存、取效率。这篇分析主要基于JDK 8 。
区别
添加数据时
版本 | 初始化方式 | hash值计算方法 | 存放数据位置判断 | 插入数据方式 |
---|---|---|---|---|
JDK 7 | 单独方式:inflateTable() | 扰动处理=9次扰动+4次位运算+5次异或 | 数组、链表 | 头插法 |
JDK 8 | 集成在扩容函数:resize() | 扰动处理=2次扰动+1次位运算+1次异或 | 数组、链表、红黑树 | 尾插法 |
扩容机制
版本 | 扩容后存储位置计算方式 | 转移数据方式 | 插入数据、位置重计算时机 |
---|---|---|---|
JDK 7 | 全部按原来方法(扰动处理->>(h&length-1)) | 头插法 | 扩容后插入、单独计算(无统一计算) |
JDK 8 | 按扩容后规律(扩容后位置=原or原+旧容量) | 尾插法 | 扩容前插入、转移数据时统一计算 |
数据结构
HashMap 底层的数据结构主要是:数组 + 链表 + 红黑树。当一个链表的元素个数达到一定的数量(且数组的长度达到一定的长度)后,则把链表转化为红黑树,从而提高效率。
重要变量
// 默认的初始容量为16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大的容量为2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的装载因子,为什么,下面讲到
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当一个桶中的元素个数大于等于8时进行树化,为什么,一样下面
static final int TREEIFY_THRESHOLD = 8;
// 当一个桶中的元素个数小于等于6时把树转化为链表
static final int UNTREEIFY_THRESHOLD = 6;
// 当桶的个数达到64的时候才进行树化
static final int MIN_TREEIFY_CAPACITY = 64;
// 数组,又叫作桶(bucket)
transient Node<K,V>[] table;
// 作为entrySet()的缓存
transient Set<Map.Entry<K,V>> entrySet;
// 元素的数量
transient int size;
// 修改次数,用于在迭代的时候执行快速失败策略
transient int modCount;
// 当桶的使用数量达到多少时进行扩容,threshold = capacity * loadFactor
int threshold;
// 装载因子
final float loadFactor;
注意事项
- 容量:容量为数组的长度,亦即桶的个数,默认为16,最大为2的30次方,当容量达到64时才可以树化。
- 装载因子:装载因子用来计算容量达到多少时才进行扩容,默认装载因子为0.75。
- 树化:当容量达到64且链表的长度达到 8 时进行树化,当链表的长度小于6时反树化。
源码分析
HashMap类注释解析
- 允许 null 值,不同于 HashTable ,是线程不安全的;
- loadFactor(影响因子) 默认值是 0.75, 是均衡了时间和空间损耗算出来的值,较高的值会减少空间开销(扩容减少,数组大小增长速度变慢),但增加了查找成本(hash 冲突增加,链表长度变长),不扩容的条件:数组容量 > 需要的数组大小 / loadFactor;
- 如果大量数据需要储存到 HashMap 中,建议 HashMap 的容量一开始就设置成足够的大小,这样可以防止在 其过程中不断的扩容,影响性能;
- HashMap 是非线程安全的,我们可以自己在外部加锁,或者通过 Collections#synchronizedMap 来实现线程安全,Collections#synchronizedMap 的实现是在每个方法上加上了 synchronized 锁;
- 在迭代过程中,如果 HashMap 的结构被修改,会快速失败。
内部类
Node
Node是一个单链表节点,其中,hash用来存储key计算得来的hash值。
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
}
TreeNode
继承自LinkedHashMap中的Entry类。
TreeNode是一个树型节点,其中,prev是链表中的节点,用于在删除元素的时候可以快速找到它的前置节点。
// 位于HashMap中
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // 红黑树节点
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // 用于在删除元素的时候可以快速找到它的前置节点。
boolean red;
}
// 位于LinkedHashMap中,双向链表节点
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
HashMap()构造
空参构造,取默认值
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
HashMap(int initialCapacity)
调用HashMap(int initialCapacity, float loadFactor)构造方法,传入默认装载因子。
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
HashMap(int initialCapacity, float loadFactor)
判断传入的初始容量和装载因子是否合法,并计算扩容门槛,扩容门槛为传入的初始容量往上取最近的2的n次方。
public HashMap(int initialCapacity, float loadFactor) {
// 检查传入的初始容量是否合法
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 检查装载因子是否合法
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
// 计算扩容门槛
this.threshold = tableSizeFor(initialCapacity);
}
static final int tableSizeFor(int cap) {
// 扩容门槛为传入的初始容量往上取最近的2的n次方
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
新增
新增 key,value 大概的步骤如下:
- 空数组有无初始化,没有的话初始化
- 如果通过 key 的 hash 能够直接找到值,跳转到 6,否则到 3;
- 如果 hash 冲突,两种解决方案:链表 or 红黑树;
- 如果是链表,递归循环,把新元素追加到队尾;
- 如果是红黑树,调用红黑树新增的方法;
- 通过 2、4、5 将新元素追加成功,再根据 onlyIfAbsent 判断是否需要覆盖;
- 判断是否需要扩容,需要扩容进行扩容,结束。
put()新增
public V put(K key, V value) {
// 调用hash(key)计算出key的hash值
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
// 如果key为null,则hash值为0,否则调用key的hashCode()方法
// 并让高16位与整个hash异或,这样做是为了使计算出的hash更分散
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
/**
* @param hash 通过 hash 算法计算出来的值
* @param key 键
* @param value 值
* @param onlyIfAbsent false 表示即使 key 已经存在了,仍然会用新值覆盖原来的值,默认为 false
* @param evict 如果为false,则table处于创建模式
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K, V>[] tab;
Node<K, V> p;
int n, i;
// 如果桶的数量为0,则初始化
if ((tab = table) == null || (n = tab.length) == 0)
// 调用resize()初始化
n = (tab = resize()).length;
// (n - 1) & hash 计算元素在哪个桶中
// 如果这个桶中还没有元素,则把这个元素放在桶中的第一个位置
if ((p = tab[i = (n - 1) & hash]) == null)
// 新建一个节点放在桶中
tab[i] = newNode(hash, key, value, null);
else {
// 如果桶中已经有元素存在了
Node<K, V> e;
K k;
// 如果桶中第一个元素的key与待插入元素的key相同,保存到e中用于后续修改value值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 如果第一个元素是树节点,则调用树节点的putTreeVal插入元素
e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
else {
// 遍历这个桶对应的链表,binCount用于存储链表中元素的个数
for (int binCount = 0; ; ++binCount) {
// 如果链表遍历完了都没有找到相同key的元素,说明该key对应的元素不存在,则在链表最后插入一个新节点
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 如果插入新节点后链表长度大于8,则判断是否需要树化,因为第一个元素没有加到binCount中,所以这里-1
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果待插入的key在链表中找到了,则退出循环
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 如果找到了对应key的元素
if (e != null) { // existing mapping for key
// 记录下旧值
V oldValue = e.value;
// 判断是否需要替换旧值
if (!onlyIfAbsent || oldValue == null)
// 替换旧值为新值
e.value = value;
// 在节点被访问后做点什么事,在LinkedHashMap中用到
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// 到这里了说明没有找到元素
// 修改次数加1
++modCount;
// 元素数量加1,判断是否需要扩容
if (++size > threshold)
// 扩容
resize();
// 在节点插入后做点什么事,在LinkedHashMap中用到
afterNodeInsertion(evict);
// 没找到元素返回null
return null;
}
treeifyBin()树化
/**
* tab:元素数组,
* hash:hash值(要增加的键值对的key的hash值)
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
/*
* 如果元素数组为空 或者 数组长度小于 树结构化的最小限制
* MIN_TREEIFY_CAPACITY 默认值64,对于这个值可以理解为:如果元素数组长度小于这个值,没有必要去进行结构转换
* 当一个数组位置上集中了多个键值对,那是因为这些key的hash值和数组长度取模之后结果相同。(并不是因为这些key的hash值相同)
* 因为hash值相同的概率不高,所以可以通过扩容的方式,来使得最终这些key的hash值在和新的数组长度取模之后,拆分到多个数组位置上。
*/
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize(); // 扩容,可参见resize方法解析
// 如果元素数组长度已经大于等于了 MIN_TREEIFY_CAPACITY,那么就有必要进行结构转换了
// 根据hash值和数组长度进行取模运算后,得到链表的首节点
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null; // 定义首、尾节点
do {
TreeNode<K,V> p = replacementTreeNode(e, null); // 将该节点转换为 树节点
if (tl == null) // 如果尾节点为空,说明还没有根节点
hd = p; // 首节点(根节点)指向 当前节点
else { // 尾节点不为空,以下两行是一个双向链表结构
p.prev = tl; // 当前树节点的 前一个节点指向 尾节点
tl.next = p; // 尾节点的 后一个节点指向 当前节点
}
tl = p; // 把当前节点设为尾节点
} while ((e = e.next) != null); // 继续遍历链表
// 到目前为止 也只是把Node对象转换成了TreeNode对象,把单向链表转换成了双向链表
// 把转换后的双向链表,替换原来位置上的单向链表
if ((tab[index] = hd) != null)
hd.treeify(tab);//此处单独解析
}
}
resize()调整
final Node<K, V>[] resize() {
// 旧数组
Node<K, V>[] oldTab = table;
// 旧容量
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 旧扩容门槛
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
// 如果旧容量达到了最大容量,则不再进行扩容
threshold = Integer.MAX_VALUE;
return oldTab;
} else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 如果旧容量的两倍小于最大容量并且旧容量大于默认初始容量(16),则容量扩大为两部,扩容门槛也扩大为两倍
newThr = oldThr << 1; // double threshold
} else if (oldThr > 0) // initial capacity was placed in threshold
// 使用非默认构造方法创建的map,第一次插入元素会走到这里
// 如果旧容量为0且旧扩容门槛大于0,则把新容量赋值为旧门槛
newCap = oldThr;
else { // zero initial threshold signifies using defaults
// 调用默认构造方法创建的map,第一次插入元素会走到这里
// 如果旧容量旧扩容门槛都是0,说明还未初始化过,则初始化容量为默认容量,扩容门槛为默认容量*默认装载因子
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
// 如果新扩容门槛为0,则计算为容量*装载因子,但不能超过最大容量
float ft = (float) newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
(int) ft : Integer.MAX_VALUE);
}
// 赋值扩容门槛为新门槛
threshold = newThr;
// 新建一个新容量的数组
@SuppressWarnings({"rawtypes", "unchecked"})
Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
// 把桶赋值为新数组
table = newTab;
// 如果旧数组不为空,则搬移元素
if (oldTab != null) {
// 遍历旧数组
for (int j = 0; j < oldCap; ++j) {
Node<K, V> e;
// 如果桶中第一个元素不为空,赋值给e
if ((e = oldTab[j]) != null) {
// 清空旧桶,便于GC回收
oldTab[j] = null;
// 如果这个桶中只有一个元素,则计算它在新桶中的位置并把它搬移到新桶中
// 因为每次都扩容两倍,所以这里的第一个元素搬移到新桶的时候新桶肯定还没有元素
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
// 如果第一个元素是树节点,则把这颗树打散成两颗树插入到新桶中去
((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
else { // preserve order
// 如果这个链表不止一个元素且不是一颗树
// 则分化成两个链表插入到新的桶中去
// 比如,假如原来容量为4,3、7、11、15这四个元素都在三号桶中
// 现在扩容到8,则3和11还是在三号桶,7和15要搬移到七号桶中去
// 也就是分化成了两个链表
Node<K, V> loHead = null, loTail = null;
Node<K, V> hiHead = null, hiTail = null;
Node<K, V> next;
do {
next = e.next;
// (e.hash & oldCap) == 0的元素放在低位链表中
// 比如,3 & 4 == 0
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
} else {
// (e.hash & oldCap) != 0的元素放在高位链表中
// 比如,7 & 4 != 0
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 遍历完成分化成两个链表了
// 低位链表在新桶中的位置与旧桶一样(即3和11还在三号桶中)
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 高位链表在新桶中的位置正好是原来的位置加上旧容量(即7和15搬移到七号桶了)
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
(1)如果使用是默认构造方法,则第一次插入元素时初始化为默认值,容量为16,扩容门槛为12;
(2)如果使用的是非默认构造方法,则第一次插入元素时初始化容量等于扩容门槛,扩容门槛在构造方法里等于传入容量向上最近的2的n次方;
(3)如果旧容量大于0,则新容量等于旧容量的2倍,但不超过最大容量2的30次方,新扩容门槛为旧扩容门槛的2倍;
(4)创建一个新容量的桶;
(5)搬移元素,原链表分化成两个链表,低位链表存储在原来桶的位置,高位链表搬移到原来桶的位置加旧容量的位置;
链表的新增
链表的新增,就是把当前节点追加到链表的尾部,和 LinkedList 的追加实现一样的。 当链表长度大于等于 8 时,此时的链表就会转化成红黑树,转化的方法是:treeifyBin,此方法有一个判断,当链表 长度大于等于 8,并且整个数组大小大于 64 时,才会转成红黑树,当数组大小小于 64 时,只会触发扩容,不会转 化成红黑树,为什么是 8, 链表查询的时间复杂度是 O (n),红黑树的查询复杂度是 O (log (n))。在链表数据不多的时候,使用链表进行遍历 也比较快,只有当链表数据比较多的时候,才会转化成红黑树,但红黑树需要的占用空间是链表的 2 倍,考虑到转 化时间和空间损耗,所以我们需要定义出转化的边界值。 在考虑设计 8 这个值的时候,我们参考了泊松分布概率函数,由泊松分布中得出结论,链表各个长度的命中概率 为: 意思是,当链表的长度是 8 的时候,出现的概率是 0.00000006,不到千万分之一,所以说正常情况下,链表的长 度不可能到达 8 ,而一旦到达 8 时,肯定是 hash 算法出了问题,所以在这种情况下,为了让 HashMap 仍然有较 高的查询性能,所以让链表转化成红黑树,我们正常写代码,使用 HashMap 时,几乎不会碰到链表转化成红黑树 的情况,毕竟概念只有千万分之一。
红黑树新增节点过程
首先判断新增的节点在红黑树上是不是已经存在,判断手段有如下两种:
- 如果节点没有实现 Comparable 接口,使用 equals 进行判断;
- 如果节点自己实现了 Comparable 接口,使用 compareTo 进行判断。
新增的节点如果已经在红黑树上,直接返回;不在的话,判断新增节点是在当前节点的左边还是右边,左边值小,右边值大;
自旋递归 1 和 2 步,直到当前节点的左边或者右边的节点为空时,停止自旋,当前节点即为我们新增节点的父节点;
把新增节点放到当前节点的左边或右边为空的地方,并于当前节点建立父子节点关系;进行着色和旋转,结束。
具体源码如下:
插入元素到红黑树中的方法。
final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
// 标记是否找到这个key的节点
boolean searched = false;
// 找到树的根节点
TreeNode<K, V> root = (parent != null) ? root() : this;
// 从树的根节点开始遍历
for (TreeNode<K, V> p = root; ; ) {
// dir=direction,标记是在左边还是右边
// ph=p.hash,当前节点的hash值
int dir, ph;
// pk=p.key,当前节点的key值
K pk;
if ((ph = p.hash) > h) {
// 当前hash比目标hash大,说明在左边
dir = -1;
}
else if (ph < h)
// 当前hash比目标hash小,说明在右边
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
// 两者hash相同且key相等,说明找到了节点,直接返回该节点
// 回到putVal()中判断是否需要修改其value值
return p;
else if ((kc == null &&
// 如果k是Comparable的子类则返回其真实的类,否则返回null
(kc = comparableClassFor(k)) == null) ||
// 如果k和pk不是同样的类型则返回0,否则返回两者比较的结果
(dir = compareComparables(kc, k, pk)) == 0) {
// 这个条件表示两者hash相同但是其中一个不是Comparable类型或者两者类型不同
// 比如key是Object类型,这时可以传String也可以传Integer,两者hash值可能相同
// 在红黑树中把同样hash值的元素存储在同一颗子树,这里相当于找到了这颗子树的顶点
// 从这个顶点分别遍历其左右子树去寻找有没有跟待插入的key相同的元素
if (!searched) {
TreeNode<K, V> q, ch;
searched = true;
// 遍历左右子树找到了直接返回
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
// 如果两者类型相同,再根据它们的内存地址计算hash值进行比较
dir = tieBreakOrder(k, pk);
}
TreeNode<K, V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
// 如果最后确实没找到对应key的元素,则新建一个节点
Node<K, V> xpn = xp.next;
TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K, V>) xpn).prev = x;
// 插入树节点后平衡
// 把root节点移动到链表的第一个节点
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
红黑树的 5 个原则:
- 节点是红色或黑色
- 根是黑色
- 所有叶子都是黑色
- 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点
- 从每个叶子到根的所有路径上不能有两个连续的红色节点
查找
HashMap 的查找主要分为以下三步:
- 根据 hash 算法定位数组的索引位置,equals 判断当前节点是否是我们需要寻找的 key,是的话直接返回,不是 的话往下。
- 判断当前节点有无 next 节点,有的话判断是链表类型,还是红黑树类型。
- 分别走链表和红黑树不同类型的查找方法。
get(Object key)
public V get(Object key) {
Node<K, V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K, V> getNode(int hash, Object key) {
Node<K, V>[] tab;
Node<K, V> first, e;
int n;
K k;
// 如果桶的数量大于0并且待查找的key所在的桶的第一个元素不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 检查第一个元素是不是要查的元素,如果是直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 如果第一个元素是树节点,则按树的方式查找
if (first instanceof TreeNode)
return ((TreeNode<K, V>) first).getTreeNode(hash, key);
// 否则就遍历整个链表查找该元素
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
(1)计算key的hash值;
(2)找到key所在的桶及其第一个元素;
(3)如果第一个元素的key等于待查找的key,直接返回;
(4)如果第一个元素是树节点就按树的方式来查找,否则按链表方式查找;
getTreeNode(int h, Object k)
final TreeNode<K, V> getTreeNode(int h, Object k) {
// 从树的根节点开始查找
return ((parent != null) ? root() : this).find(h, k, null);
}
final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
TreeNode<K, V> p = this;
do {
int ph, dir;
K pk;
TreeNode<K, V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
// 左子树
p = pl;
else if (ph < h)
// 右子树
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
// 找到了直接返回
return p;
else if (pl == null)
// hash相同但key不同,左子树为空查右子树
p = pr;
else if (pr == null)
// 右子树为空查左子树
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
// 通过compare方法比较key值的大小决定使用左子树还是右子树
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
// 如果以上条件都不通过,则尝试在右子树查找
return q;
else
// 都没找到就在左子树查找
p = pl;
} while (p != null);
return null;
}
经典二叉查找树的查找过程,先根据hash值比较,再根据key值比较决定是查左子树还是右子树。
删除
remove(Object key)
public V remove(Object key) {
Node<K, V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K, V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K, V>[] tab;
Node<K, V> p;
int n, index;
// 如果桶的数量大于0且待删除的元素所在的桶的第一个元素不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K, V> node = null, e;
K k;
V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 如果第一个元素正好就是要找的元素,赋值给node变量后续删除使用
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
// 如果第一个元素是树节点,则以树的方式查找节点
node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
else {
// 否则遍历整个链表查找元素
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 如果找到了元素,则看参数是否需要匹配value值,如果不需要匹配直接删除,如果需要匹配则看value值是否与传入的value相等
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
// 如果是树节点,调用树的删除方法(以node调用的,是删除自己)
((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
else if (node == p)
// 如果待删除的元素是第一个元素,则把第二个元素移到第一的位置
tab[index] = node.next;
else
// 否则删除node节点
p.next = node.next;
++modCount;
--size;
// 删除节点后置处理
afterNodeRemoval(node);
return node;
}
}
return null;
}
(1)先查找元素所在的节点;
(2)如果找到的节点是树节点,则按树的移除节点处理;
(3)如果找到的节点是桶中的第一个节点,则把第二个节点移到第一的位置;
(4)否则按链表删除节点处理;
(5)修改size,调用移除节点后置处理等;
TreeNode.removeTreeNode(...)
final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab,
boolean movable) {
int n;
// 如果桶的数量为0直接返回
if (tab == null || (n = tab.length) == 0)
return;
// 节点在桶中的索引
int index = (n - 1) & hash;
// 第一个节点,根节点,根左子节点
TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
// 后继节点,前置节点
TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
if (pred == null)
// 如果前置节点为空,说明当前节点是根节点,则把后继节点赋值到第一个节点的位置,相当于删除了当前节点
tab[index] = first = succ;
else
// 否则把前置节点的下个节点设置为当前节点的后继节点,相当于删除了当前节点
pred.next = succ;
// 如果后继节点不为空,则让后继节点的前置节点指向当前节点的前置节点,相当于删除了当前节点
if (succ != null)
succ.prev = pred;
// 如果第一个节点为空,说明没有后继节点了,直接返回
if (first == null)
return;
// 如果根节点的父节点不为空,则重新查找父节点
if (root.parent != null)
root = root.root();
// 如果根节点为空,则需要反树化(将树转化为链表)
// 如果需要移动节点且树的高度比较小,则需要反树化
if (root == null
|| (movable
&& (root.right == null
|| (rl = root.left) == null
|| rl.left == null))) {
tab[index] = first.untreeify(map); // too small
return;
}
// 分割线,以上都是删除链表中的节点,下面才是直接删除红黑树的节点(因为TreeNode本身即是链表节点又是树节点)
// 删除红黑树节点的大致过程是寻找右子树中最小的节点放到删除节点的位置,然后做平衡,此处不过多注释
TreeNode<K, V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K, V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red;
s.red = p.red;
p.red = c; // swap colors
TreeNode<K, V> sr = s.right;
TreeNode<K, V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
} else {
TreeNode<K, V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
} else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K, V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);
if (replacement == p) { // detach
TreeNode<K, V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
(1)TreeNode本身既是链表节点也是红黑树节点;
(2)先删除链表节点;
(3)再删除红黑树节点并做平衡;
时间复杂度
数组的查询效率为O(1),链表的查询效率是O(k),红黑树的查询效率是O(log k),k为桶中的元素个数,所以当元素数量非常多的时候,转化为红黑树能极大地提高效率。
线程不安全
HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。
出现线程安全原因
在并发的场景中使用HashMap可能造成死循环(环形链表)。如果有两个线程A和B,都进行插入数据,刚好这两条不同的数据经过哈希计算后得到的哈希码是一样的,且该位置还没有其他的数据。所以这两个线程都会进入我在上面标记为1的代码中。假设一种情况,线程A通过if判断,该位置没有哈希冲突,进入了if语句,还没有进行数据插入,这时候CPU就把资源让给了线程B,线程A停在了if语句里面,线程B判断该位置没有哈希冲突(线程A的数据还没插入),也进入了if语句,线程B执行完后,轮到线程A执行,现在线程A直接在该位置插入而不用再判断。这时候,你会发现线程A把线程B插入的数据给覆盖了。发生了线程不安全情况。本来在HashMap中,发生哈希冲突是可以用链表法或者红黑树来解决的,但是在多线程中,可能就直接给覆盖了。
解决方式
ConcurrentHashMap
- 没有同步整个Map,仍然是线程安全的
- 读操作非常快,而写操作则是通过加锁完成的
- 在对象层次上不存在锁(即不会阻塞线程)
- 锁的粒度设置的非常好,只对哈希表的某一个key加锁
ConcurrentHashMap
不会抛出ConcurrentModificationException
,即使一个线程在遍历的同时,另一个线程尝试进行修改。ConcurrentHashMap
会使用多个锁- 不允许键为null
SynchronizedHashMap
- 会同步整个对象
- 每一次的读写操作都需要加锁
- 对整个对象加锁会极大降低性能
- 这相当于只允许同一时间内至多一个线程操作整个Map,而其他线程必须等待
- 它有可能造成资源冲突(某些线程等待较长时间)
SynchronizedHashMap
会返回Iterator
,当遍历时进行修改会抛出异常- 允许键为null
为什么是0.75 & 8
从以上源码中,我们可以了解到,在当链表长度 >= 8 时,此时的链表就会转化成红黑树,转化的方法是:treeifyBin(),此方法有一个判断,当链表长度>= 8,并且整个数组大小> 64 时,才会转成红黑树,当数组大小<64 时,只会触发扩容,不会转化成红黑树。
那么,这个转为红黑树的阈值(TREEIFY_THRESHOLD)为什么是8呢?
加载因子(DEFAULT_LOAD_FACTOR)为什么是0.75呢?
/*
* Implementation notes.
* ...
* Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
在HashMap源码的143~198行,解释了这个 0.75 和 8 的由来。中文翻译过来大概的意思是:
链表查询的时间复杂度是 O (n),红黑树的查询复杂度是 O (log (n))。在链表数据不多的时候,使用链表进行遍历也比较快,只有当链表数据比较多的时候,才会转化成红黑树,但红黑树需要的占用空间是链表的 2 倍,考虑到转化时间和空间损耗,所以我们需要定义出转化的边界值。
在考虑设计阈值的时候,我们参考了泊松分布概率函数,由泊松分布中得出结论,链表各个长度的命中概率为:
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million
意思是,链表的长度为 8 的概率是 0.00000006,不到千万分之一,所以说正常情况下,链表的长度不可能到达 8 ,而一旦到达 8 时,肯定是 hash 算法出了问题,所以在这种情况下,为了让 HashMap 仍然有较高的查询性能,所以让链表转化成红黑树,我们正常写代码,使用 HashMap 时,几乎不会碰到链表转化成红黑树的情况,毕竟概率只有千万分之一。
其实想要hash的更加彻底还有很多神奇的算法,比如redis的murmurHash或者DJB HASH算法,但是因为性能差不多最后还是用了效率最高的^(异或 XOR)来解决问题。
补充:在理想情况下,使用随机哈希码,在扩容阈值(加载因子)为0.75的情况下,节点出现在频率在Hash桶(表)中遵循参数平均为0.5的泊松分布。忽略方差,即X = λt,P(λt = k),其中λt = 0.5的情况,按公式:
计算结果如上述的列表所示,当一个链表长度达到8个元素的时候,概率为0.00000006,几乎是一个不可能事件。
所以我们可以知道,其实常数λ=0.5是作为参数代入泊松分布来计算的,而加载因子0.75是作为一个条件,当HashMap长度为length/size ≥ 0.75时就扩容,在这个条件下,k取值为如上整数时冲突后的拉链长度和概率结果如上。
加载因子为啥不能为0.8、0.6
HashMap中除了哈希算法之外,有两个参数影响了性能:初始容量和加载因子。初始容量是哈希表在创建时的容量,加载因子是哈希表在其容量自动扩容之前可以达到多满的一种度量。
在维基百科来描述加载因子:
对于开放定址法,加载因子是特别重要因素,应严格限制在0.7-0.8以下。超过0.8,查表时的CPU缓存不命中(cache missing)按照指数曲线上升。因此,一些采用开放定址法(解决冲突的方法)的hash库,如Java的系统库限制了加载因子为0.75,超过此值将resize散列表。
在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少扩容rehash操作次数,所以,一般在使用HashMap时建议根据预估值设置初始容量,以便减少扩容操作。
总结一句话:选择0.75作为默认的加载因子,完全是查询时间和空间利用率成本上寻求的一种折衷选择。
JDK7的resize()
void resize(int newCapacity) { //传入新的容量
Entry[] oldTable = table; //引用扩容前的Entry数组
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) { //扩容前的数组大小如果已经达到最大(2^30)了
threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
return;
}
Entry[] newTable = new Entry[newCapacity]; //初始化一个新的Entry数组
transfer(newTable); //!!将数据转移到新的Entry数组里
table = newTable; //HashMap的table属性引用新的Entry数组
threshold = (int)(newCapacity * loadFactor);//更新扩容阈值
}
复制数据时,调用了transfer方法:
void transfer(Entry[] newTable) {
Entry[] src = table; //src引用了旧的Entry数组
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
Entry<K,V> e = src[j]; //取得旧Entry数组的每个元素
if (e != null) {
src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
// 先更新next 的指向;也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;
// 这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话)
e.next = newTable[i];
newTable[i] = e; //将元素放在数组上
e = next; //访问下一个Entry链上的元素
} while (e != null);
}
}
}
这里在重新计算每个元素在数组中的位置时,与JDK1.8不同。
更多
头插尾插:
其次JUC包下的集合是一个很大的话题, ConcurrentHashMap 在JDK1.7及以前和1.8之后的差别也是非常巨大的,也是一个非常有意思的话题,文章中对它的介绍应该是基于1.8以后的,这块最好还是单独写一篇文章分析。
整篇文章对 HashMap 的源码分析大而全,确实很不错。但是细节上还是有模糊的地方, Hashmap 并发插入导致出现循环链表的条件极其苛刻,只有在多个线程同时插入哈希值相同的元素并且导致扩容才会出现循环链表(虽然是属于纯八股文的内容了,了解即可);
好评 确实,细讲还有很多延伸细节要注意